Features

- On-board DSP greatly improves total system performance
- Built-in signal conditioning simplifies tests and reduces cost
- Anti-alias protection from 0.4 Hz to 88 kHz guarantees reliable data
- Local Bus gives high-speed data capture to VT2216A data disk
- Optional 16/20-bit arbitrary source or dual input tachometer
- VXIplug&play-compatible with Windows and HP-UX drivers
- Multiple breakout box options

Overview

The VXI Technology VT1433B 8-channel digitizer is a C-size, single-slot, register-based VXI module that includes DSP, transducer signal conditioning, alias protection, digitization, and high-speed measurement computation. You can even add an optional arbitrary source or dual-input tachometer. On-board computation of measurement results, fast data transfer to the host computer, and a dedicated high-speed data bus for module-to-module communication, all combine to provide an outstanding measurement architecture for demanding mechanical, acoustic and electrical test applications. Putting so much capability in a single module decreases system cost while increasing system performance.

The VT1433B 8-channel 196 kSa/s Digitizer plus DSP is a C-size VXI module, and may contain either one or two four-channel input assemblies so that the module may have a total of up to eight inputs.

On-board digital signal processing and 32 MB of RAM maximizes total system performance and flexibility.

Specifications

Input

- Full Scale Input Ranges: 5 mV to 10 V (1, 2, 5 steps)
- Maximum Input Level: 42 Vp
- Input Impedance (dc coupled or ac coupled above 10 Hz)
 - Differential: 2 MΩ nominal
 - Either side-to-chassis: 1 MΩ nominal
- Programmable ac Coupling
 - 3 dB Corner Frequency (two-pole, 12 dB/octave): 1 to 100 Hz
- Common Mode Rejection Ratio
 - ac or dc coupled, 10 Hz to 1 kHz: >70 dB
 - Maximum signal, low side to chassis: ±10 Vp
 - Maximum signal, high side to chassis (VT = 0): ±11.5 Vp
 - Maximum signal, high side to chassis (VT = transducer offset cancellation voltage setting): VT ±10 Vp (must be ≤20 V)
VT1433B

8-channel 196 kSa/s Digitizer plus DSP

Amplitude Over-Range Detection:
- Common mode overload: ±11.5 Vp (typical)
- Differential mode overload (dc coupled): 105% of full scale

Frequency:
- Sample rate: 196,608 to .15 Sa/Sec
- Bandwidth: 88,320.001 to 0.06 Hz

Frequency Accuracy: ±0.012% (120 ppm)

Differential Mode Overload (ac coupled):
- for cutoff frequency ≤6 Hz: 100% of full scale
- for cutoff frequency >6 Hz: 50% of full scale, worst case

Residual dc: 1% of full scale +2 mV

Amplitude Accuracy at 1 kHz: ±0.5% of reading, ±0.01% of full scale

Flatness (relative to 1 kHz, at full scale):
- <29 kHz: ±1%(±0.09 dB)
- <88 kHz: ±2%(±0.17 dB) for >100 mV range
- 5 mV to 100 mV range: ±5%(±0.42 dB)

Amplitude Resolution: 16 bits, less 5.5 dB over-range (typical)

Cross-channel Matching
(any VT1433B module in the same mainframe)

Cross-channel Amplitude Match:
- up to 29 kHz: ±0.1 dB (freq > 2x ac HPF corner freq when ac coupled)
- 29 kHz to 88 kHz: ±0.2 dB

Cross-channel Phase Match
(full-scale signal, input ranges equal)

Dynamic Range

Resolution: 16 bits

Spurious-Free Dynamic Range: (includes spurs, harmonic distortion, intermodulation distortion, alias products and sidebands >300 Hz) (source impedance = 50 Ω)
- 51.2 kSa/s Fs, ≤ 1 Vp: <90 dBfs (typical)
- 48 kSa/s to 65.536 Sa/s Fs: <80 dBfs
- above 65.536 Sa/s Fs: <74 dBfs

Residual Response with No Input: <76 dBfs

* 5 mV range degrades 6 dB.

Crosstalk: <80 dBfs (typical)
(receiving channel source impedance = 50 Ω, low side grounded, full scale, <10 kHz signal on other channels, input ranges within 20 dB)

Noise (input terminated with 50 Ω, 5 mV range):
- Noise density above 100 Hz: <70 nV rms/√Hz
- Total rms noise, 10 Hz to 10 kHz: <7 µV rms

Triggering

Trigger Detection: Digital

Trigger Modes: Input, external, source, TTL TRG, software, RPM (requires option AYF)

Maximum Trigger Delay (8 channels active):
- Pre-trigger delay: 2 MSa (32 MB RAM)
- Post-trigger delay: 16 MSa

Online at vxitech.com 949 • 955 • 1 VXI
Option 104 Arbitrary Source Specifications

General

Output Modes: Sine and pseudo random with burst; arbitrary waveform with continuous output

Frequency Bands:

Sine, Noise Modes
Reconstruction filter bandwidth 0 kHz to 25.6 kHz
DSP data rate (Fs) 48.00 kHz to 65.536 kHz
Data word size 16 bits

Arb Modes
Reconstruction filter bandwidth 0 kHz to 6.4 kHz
Data word size 20 bits
Frequency Accuracy ±0.012% (120 ppm)

Signal Output

Number of Output Channels: 1
Maximum Amplitude: 10 Vp nominal
Output Impedance: <0.5 Ω (typical)
Maximum Output Current: 100 mA (typical)
Maximum Capacitive Load: 0.01 µF (typical)

Amplitude Control: (signal amplitude = range × scale factor)
Maximum Amplitude: 10 Vp nominal
Amplitude Ranges: 79 mVp to 10 Vp in 0.375 dB steps
Amplitude Scale Factor: 0.0 to 1.0, with 20-bit resolution

Residual Output Noise Voltage: (Freq > 500 Hz) <500 nV/√Hz

Residual dc Offset:
Offset after autozero ±2 mV
Offset after shutdown ±20 mV
Zeroing resolution 100 µV

Output Overload Trip: >17 V
Amplitude Ramp-down Time: 0 s to 30 s (Programmable)

Shutdown:
Shutdown input TTL levels
Shutdown time <5 s
Shutdown time, ac fail 4 ms

Sine Output Mode

Sine Frequency (65536 Hz Fs):
Frequency range 0 Hz to 25.6 kHz
Frequency resolution 244 μHz

Amplitude Accuracy:
(1 kHz sine wave, into ≥200 Ω)
10 Vp to 0.158 Vp ranges ±0.20 dB (2.3%)
0.152 Vp to 79 mVp ranges ±0.40 dB (4.7%)

Flatness (relative to 1 kHz): ±0.5 dB

Harmonic and Aliased-harmonic Distortion (≥1 kHz load):
1 Vp range,
1.0 scale factor,
0 to 6.4 kHz,
<–80 dBc
2 Vp to 10 Vp range,
0.05 to 1.0 scale factor,
0 Hz to 25.6 kHz,
<–70 dBc

Spurious Responses: <–60 dB/Vp

Constant-Level Output

Output Level at 1 kHz: 1 Vp (nominal)
(after 1 second settling, amplitude scale factor > 0.001)

Output Impedance: 1.2 kΩ (typical)

Flatness:
25 Hz to 5 kHz, amplitude scale factor 0.001 to 1.0
1.13 Vp to 0.50 Vp (+10, -6.0 dB) (typical)
5 Hz to 20 kHz, amplitude scale factor 0.01 to 1.0
1.13 Vp to 0.44 Vp (+10, -7.0 dB) (typical)
5 Hz to 20 kHz, amplitude scale factor 0.1 to 1.0
1.13 Vp to 0.88 Vp (+1.0 dB) (typical)

Sine Wave Distortion:
(at 1 kHz, amplitude scale factor 0.1 to 1.0)
<–40 dBc (typical)

Residual dc Offset: <5 mV (typical)
8-channel 196 kSa/s Digitizer plus DSP

Option AYF Tachometer Input Specifications

Option AYF Tachometer Input, provides two tachometer inputs. When this option is installed, two of the three SMB connectors on the VXI module are used for tachometer inputs. When this option is not installed, these connectors are normally used for “External Sample” and “Trigger.” Each tachometer input has a programmable trigger level.

Each tach pulse causes a “Tach Edge Time” to be recorded in a 16384-word FIFO. A “Tach Edge Time” is the instantaneous value of the 32-bit “Tach Counter.” A “Decimate” number can be set to ignore a number of tach pulses before recording each Tach Edge Time. A “Holdoff” time can be set to avoid false triggering due to ringing.

One of the tachometer inputs can be programmed for use as a trigger input instead. In this mode, the tachometer option can trigger the system and measure the time between the trigger and the next sample clock edge.

The analog signal from either of the tachometer inputs can be routed to an input channel using the internal calibration path.

General
Tach Counter: 32-bit counter with roll-over detector bit
Decimate Counter: 16-bit counter
Input Signal Trigger Level (typical):
 Voltage Range -25 V to +25 V
 Resolution, levels <± 5 V 40 mV
 Resolution, levels >± 5 V 200 mV
 Hysteresis, levels <± 5 V 0 to 250 mV
 Hysteresis, levels >± 5 V 0 to 1.25 mV Slope Programmable, positive or negative
Input Signal Timing:
 Minimum pulse width 5 µs
 Maximum pulse rate 100 kHz
 Trigger holdoff 1 to 65536 clock periods
Input Impedance: 20 kΩ (typical)

VXI System Level Specifications

Features

VXI Standard Information:
Conforms to VXI Revision 1.4 C-size, single slot, register-based programming, “Slave” Data Transfer Bus functionality, A24 address capability, D32 data capability, Optional Local Bus capability, SUMBUS driver and receiver. Requires two or four TLTRG lines for multi-module synchronization

Software

Driver Type: VXIplug&play C libraries with source code and ME4X ActiveX driver
Supported Operating Systems:
MS Windows, Linux, HP-UX
Plug&Play Compliance: MS Windows, Linux, HP-UX

Regulatory Compliance

Safety Standards:
CSA C22.2, No. 231
Electrostatic Discharge:
Tested for compliance to the European Economic Area’s EMC directive
Radiated Immunity:
Tested for compliance to the European Economic Area’s EMC directive
Environmental

Operating Restrictions:

Ambient Temperature 0 °C to 50 °C
Humidity, Non-condensing 20% RH to 90% RH at 40 °C
Maximum Altitude 4600 meters (15,000 feet)

Storage and Transport Restrictions:

Ambient Temperature -20 °C to 65 °C
Humidity, Non-condensing 20% RH to 90% RH at 40 °C
Maximum Altitude 4600 meters (15,000 feet)

Ordering Information

VT1433B 8-channel 196 kSa/s Digitizer plus DSP
VT1433B-1D1 Real time octave measurements
VT1433B-1D4 Arbitrary source
VT1433B-1DL Four input channel configuration
VT1433B-AYF Add tachometer input
VT1433B-UGV Add local bus interface
VT3240A Voltage input breakout box (8 channels)
VT3241A IEPE/voltage input breakout box (8 channels)
VT3242A Charge/IEPE/voltage input Breakout Box (4 channels)
VT3243A Microphone/IEPE/voltage input breakout box (4 channels)
VT3241-AXM Dual rack mount kit for VT3240A or VT3241A
VT3241-AXN Rack mount kit for 8 VT3240A or VT3241A BoBs
VT3242-AXM Dual rack mount kit for VT3242A or VT3243A