LXI combines the benefits of GPIB, VXI and Ethernet, with the expertise of 50 of the leading instrumentation companies, resulting in one common forward looking instrumentation platform.

LXI (LAN eXtensions for Instrumentation) is a powerful test instrumentation platform supported by the world's leading instrumentation companies. LXI combines the synchronization and triggering features inherent in VXIbus and IEEE-1588 devices, with the benefits of Ethernet and GPIB.

The standard defines a platform for small to medium channel density and distributed modular instruments using low-cost, open-standard LAN (Ethernet) as the system backbone. LXI was developed to offer the size and integration advantages of modular instruments without the cost constraints of card-cage architectures. The standard continues to evolve, leveraging current and future LAN functionality, far exceeding legacy T&M connectivity capabilities.

Six key attributes set LXI apart from other architectures:

- Speed, simplicity, worldwide reach, low implementation cost, and backward compatibility of LAN.
- Quick, easy configuration through the intuitive web interface built into compliant instruments.
- Simplified programming and greater software reuse through IVI drivers.
- The ability to create hybrid systems that include LXI, GPIB, and VXI.
- Enhanced system performance and event handling via hardware- and LAN-based triggering modes.
- Synchronization of local and remote instruments through the IEEE-1588 precision time protocol.

LXI is an idea whose time has finally come. It puts the power of Ethernet to work for test and measurement engineers by improving the modularity, flexibility and performance ideal for small to medium size systems.
VTI and Agilent Technologies co-founded the LXI Standard in response to customer requests for a common, simplified instrumentation platform ideally suited for small to medium channel density and distributed test applications.

- Ethernet is an established high-speed bus that continues to evolve ●
- Increases in data throughput not matched by GPIB and MXI ●
- Stable architecture that provides backward compatibility ●
 - Computer platform and OS independence ●
 - Low-cost interface, cabling and accessories ●
 - Unlimited range and nodes ●

The LXI consortium was co-founded by VXI Technology (VTI) and Agilent Technologies in 2004 to offer the industry an open-architecture instrumentation bus that would leverage all of the benefits of Ethernet for test and measurement. The intent was to provide ‘one’ forward looking architecture for small-to-medium density and distributed applications. By leveraging the two most successful instrumentation platforms (VXI and GPIB), LXI has been adopted and carried forward by approximately 50 of the leading manufacturers of test and measurement instrumentation.

LXI’s compact, flexible packaging, high-speed I/O, and reliable operation meet the needs of R&D and manufacturing engineers delivering electronics for the aerospace/defense, automotive, industrial, medical, and consumer electronics markets.

The VXIbus is an ideal platform for our customers that require high-channel density in their applications. LXI now allows us to develop leading edge products with the same longevity advantages that VXI has given the industry, for the applications that VXI was not designed to address.
VTI has been instrumental in the development of the LXI specification, contributing significant engineering resources to the technical working groups tasked with content generation, test, and validation.

The LXI Specification extends the capabilities of typical Ethernet by addressing key functional areas that are necessary to ensure instrument interoperability, performance, and usability. The primary sections include the following:

- **Physical**
- **LAN Device Synchronization and LAN-based Triggering**
- **Module-to-Module Data Communications**
- **Hardware TriggerBus**
- **Programmatic Interface**
- **LAN Configuration**
- **WEB Interface**

The base level of LXI compliance features device discovery, web browser control, and a common application programming interface (API). Web browser functionality provides out-of-the-box operation without the installation of any software or drivers, while device discovery identifies all LXI compliant devices on the network, simplifying startup and configuration.

IEEE 1588 further extends LXI instrument functionality by adding LAN-based synchronization. IEEE-1588 defines a precision clock synchronization protocol for networked measurement instrumentation exclusively over the LAN connection.

Instruments can be synchronized, and activities initiated, using LAN commands with accuracies in the sub-microsecond range. This approach is ideal for distributed measurement applications.

The addition of the TriggerBus Hardware Trigger Interface provides the highest level of synchronization and platform interoperability. This interface is ideal when applications require hardware-level triggering for deterministic command, response and handshaking; system-level clock and trigger distribution is also possible. The TriggerBus interface also provides a convenient mechanism for interfacing to other open-standard platform architectures, such as the VXIbus, thus leveraging current test hardware investments.

LXI test and measurement modules are optimized for use in design validation and manufacturing test systems with LAN connectivity enabling modules to be accessed from anywhere in the world. Unlike a modular cardcage, LXI modules are self-contained with their own processor, LAN connections, power supply and trigger inputs. Signal I/O connections are typically located on the front panel, with LAN and power connections located on the rear. LXI modules eliminate the need for displays, buttons and dials traditionally found on rack-and-stack instrumentation. They use standard web browsers for troubleshooting and implement IVI-COM drivers for communications, thus simplifying system integration.
The LXI specification has been divided into key functional areas, and product certification is based upon specific “Class” requirements. Class A encompasses all of the benefits of LXI and is the class of choice for systems that require instrumentation to be tightly integrated and synchronized.

LXI Class A

Class A compliant devices must include all of the requirements of Class B and Class C in addition to a hardware trigger interface. This interface will provide the means for deterministic hardware triggering and synchronization of LXI instruments, utilizing a consistent hardware and programmatic interface. The TriggerBus interface also provides a means to interface with other open standard platform architectures, such as VXIbus, maximizing the user’s test and measurement investment dollars.

LXI Class B

Class B compliant devices must include all of the requirements of Class C, and also employ IEEE 1588, a standard that defines a precision clock synchronization protocol for networked measurement and control systems. This approach ensures extremely accurate device synchronization utilizing only the Ethernet interface/wire.

LXI Class C

Class C compliance is the baseline level of certification and encompasses areas such as basic network functionality, device discovery, web browser interfacing, user interface, and physical attributes. Class C does not allow for multiple LXI devices to trigger each other or make synchronous measurements.
LXI Bridge Objective

The main objective behind any bridge or adapter device is to retain all native platform functionality while providing a transparent path to the protocol or interface of choice, LXI in this instance. Not only can the design engineer count on the native performance of the VXIbus, but also leverage the features of LXI such as long communications path lengths, high data transfer rates, hardware and software independence, and easy cable routing.

LXI instruments and interfaces have been architected so that hybrid systems can be easily configured. LAN-based test systems will use standard LAN connectivity with off-the-shelf switches and hubs permitting simple setup without expensive interface cards and proprietary cable configurations. Instrumentation can now be placed near test articles, or where most convenient, without any undue restrictions using standard copper or fiber optic cable.

Industry Reality

Many functional test and data acquisition applications are ideally suited for VXIbus solutions, and the introduction of a new instrumentation interface will not change this reality. However, there will be significant opportunities to leverage the advantages of LXI-based devices, requiring a seamless integration path between the two architectures. Therefore, bridge devices are essential if the designer hopes to leverage all of the alternatives available.
LXeye - Connect and Control

Portable display, data logging, and control of Ethernet-based data acquisition and functional test instrumentation has never been easier. VTI’s LXeye™ Connect and Control Tablet PC provides a powerful platform loaded with I/O libraries, graphical user interfaces (GUI’s), instrument drivers, and applications to instantly access your LXI™ devices. With this out-of-the-box solution, simply connect to your instrumentation using wireless or wired LAN ports, and begin.

Functionality

This light-weight, portable package is powered by an Intel Pentium M Processor with enough muscle to tackle even the most demanding applications, with battery life capable of providing continuous operation up to six hours on a single charge.

A convenient detachable keyboard simplifies use without sacrificing portability in the field. Sensitive test data and company proprietary information is protected with a high-security fingerprint recognition system, providing controlled access to authorized personnel.

All LXI instruments are discovered and displayed with the click of a button, eliminating common setup and configuration efforts. In addition, full-feature soft front panels and application programs are easily accessed.

Additionally, this commercial-off-the-shelf (COTS) solution can be easily upgraded with standard computer accessories and peripherals.

Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Intel Pentium M</td>
</tr>
<tr>
<td>Memory</td>
<td>256MB (upgradable to 1GB)</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>30GB</td>
</tr>
<tr>
<td>Operating System</td>
<td>Microsoft Windows XP Tablet PC Edition 2005</td>
</tr>
<tr>
<td>Additional Software</td>
<td>Agilent Technologies I/O Library Suite</td>
</tr>
<tr>
<td></td>
<td>LXI™ Instrument Discovery</td>
</tr>
<tr>
<td></td>
<td>Utility DAC Express Data</td>
</tr>
<tr>
<td></td>
<td>Recorder/Logger VXI Technology</td>
</tr>
<tr>
<td></td>
<td>Instrument Driver Suite</td>
</tr>
<tr>
<td>Display</td>
<td>12.1” TFT LCD (1024 x 768 resolution)</td>
</tr>
<tr>
<td>External Interface</td>
<td>External monitor, IEEE-1394, USB, RJ45 LAN, PCMCIA slot, IrDA, MIC</td>
</tr>
<tr>
<td>Light Sensor</td>
<td>Automatically adjusts brightness to environment</td>
</tr>
<tr>
<td>Hot Swap</td>
<td>5 Minutes in S3 Mode for battery hot swap</td>
</tr>
<tr>
<td>Dimensions</td>
<td>1.87 cm Thick</td>
</tr>
</tbody>
</table>

Features

- Full Feature Instrumentation Access and Control
- Automatic LXI™ Instrument Discovery and Display
- Pre-configured Applications for Display, Control and Logging
- Test Data Security Through Fingerprint Recognition
- Light, Thin and Portable LXeye Tablet PC

Ordering Information

EX-T12PC: LXeye PC Tablet
EX2500 LXI-VXI Slot-0

All of the advantages of the VXIbus, such as modularity, high-density, and performance are now combined with the features of the LXI Standard in an innovative LXI-VXI Gigabit Ethernet Slot-0 Controller. The EX2500 provides a seamless transition path from higher-cost, less flexible, less robust interfaces to this powerful Ethernet-based LXI controller. High speed data transfers, multi-mainframe trigger extension, universal VISA support, an embedded resource manager, along with LXI compliant LAN interface makes this the most powerful VXIbus interface on the market.

The Power of LXI

The VXI TTL trigger-bus is a powerful component of VXI-based systems and is used to facilitate hardware handshaking between modules, freeing up the CPU for other tasks. With the introduction of the EX2500, all eight of the VXI TTL triggers can now be extended across multiple mainframes and to other LXI devices through the LXI TriggerBus compliant front panel connectors (LVDS). Additionally, the EX2500 incorporates the LXI standard VXI-11 instrument discovery mechanism, greatly simplifying integration within hybrid systems.

Data Transfer Rates

As technology moves toward more data intensive applications in the functional test and data acquisition environments, the ability to quickly offload data to the host controller for processing is critical. The EX2500 is a high-speed gigabit serial communications device and has been optimized for transferring blocks of data in excess of 40 MB/s, faster than any other serial interface currently found in the industry today. A high-performance DMA controller is used during block moves to achieve superior transfer rates. This is accomplished without compromising traditional message-based (word-serial) command performance.

Simplified Cabling and Connectivity

Communication back to the host processor is achieved using a standard CAT5e Ethernet cable. Distances between mainframe and host of up to 200 meters can be realized. A fiberoptic connection is available if even greater distances are required. Wireless control of VXI instruments is also now possible through the use of wireless routers. The EX2500 achieves top performance when connected to a gigabit LAN interface which is also a standard item in CPU motherboards. Low-cost gigabit Ethernet switches can be used to connect multiple mainframes to a single host. For legacy systems, SMB connectors are provided for single-line trigger input/output as well as external reference clock input/output.

Familiar Software Interfaces

The EX2500 is fully compliant with the VXIplug&play specifications and implements VISA as the API communication layer. A standard VISA I/O library is included and integrates seamlessly with either Agilent Technologies or National Instruments™ versions of VISA.

Features

- Up to 10 km distance from PC to mainframe through fiberoptic interface
- 40 MB/s block transfer rates
- Embedded Web Interface provides interactive utility to control instruments
- Rack-Rack TTL trigger extension through on-board LXI Trigger Bus
- Backward compatibility with VXI 1.4 and 2.0 products
- External Clock In/Out with on-board options for TCXO/OCXO
- VXIplug&play compliant
EX2500 LXI-VXI Slot-0

This greatly simplifies installation of the EX2500 into legacy systems using the VISA protocol and preserves any investment in existing TPS and driver development by eliminating the need for costly code modifications.

The VXI Resource Manager is executed automatically at power up time and all system resources are allocated without the need to run a separate utility. The EX2500 runs an embedded web interface and system status including installed VXI hardware, memory allocation, IP configuration and logical address information can be viewed through an .html LXI-style web page. Direct communication to installed devices through message or register-based commands, can be achieved through this interface. Firmware updates to the module can be accomplished through a few mouse clicks.

Specifications

Size: 1-slot, C-size
Slot 0 Capability Yes
Resource Manager Embedded
Address Space Access A16/A24/A32
VXI Revision Compliance 1.4, 2.0, 3.0
Maximum Data Transfer Rate (Block Move) 40MB/s
DRAM 256 MB, 333 MHz DDR-SDRAM Options to 2 GB
CLK10 Stability +/- 50 ppm standard TCXO and OCXO options
Trigger Support VXITTL0-7 LXI0-7 TRIG IN/TRIG OUT (Front Panel)
Processor 833 MHz
Ethernet Protocol TCP/IP, VXI-11 and LXI Instrument Discovery
Cable Lengths 100 M between devices (copper) 10 kM between devices (fiber)
I/O Library Agilent I/O Library Suite, 14.1
VISA Support VXIplug&play compliant
OS Support Windows XP/2000/NT/Me/98

Ordering Information

EX2500 LXI-VXI Gigabit Ethernet Slot 0 Interface
70-0313-001: OCXO Timebase Option
70-0313-002: TCXO Timebase Option
70-0322-000: TriggerBus Termination Kit
52-0515-003: 0.3 Meter TriggerBus Cable
52-0515-015: 1.5 Meter TriggerBus Cable
52-0515-030: 3.0 Meter TriggerBus Cable
52-0515-100: 10.0 Meter TriggerBus Cable
The EX2108/16 is a high-density trigger distribution interface designed specifically for the LXI™ TriggerBus subsystem. The LXI™ TriggerBus provides a deterministic hardware trigger and clock distribution mechanism to easily synchronize multiple LXI™ devices.

Functionality

The EX2108 and EX2116 provide 8- and 16-port trigger-bus expansion, respectively, for use with TriggerBus compliant devices. The EX2108/16 allows multiple trigger-bus chains to expand from a single master, providing the capability to create larger channel count systems, while still maintaining measurement synchronization. The EX2108/16 trigger expansion provides buffering and termination, making each port an endpoint on separate trigger chains. Internal termination eliminates the need for external termination blocks simplifying setup and configuration time. Each chain can support up to 20 devices with the EX2108 expanding the master chain to include seven more chains of up to 20 devices each, supporting up to 160. The EX2116 provides the addition of fifteen such chains, allowing for the creation of a 320 device system.

Specifications

- **Number of Ports**
 - EX2108: 8 ports
 - EX2116: 16 ports

- **Trigger Channel Bandwidth**: 100 MHz

- **Trigger Lines**: 4 Lines per Port

- **Devices per Chain**: 20 Maximum

- **Maximum Chain Length**: 20 Meters

- **Operating Temperature**: 0° C to 50° C

- **Power Input**: (90 – 264) V ac, (50/60) Hz, 25 VA maximum

- **Dimensions**: 1.75” H x 17.5” W x 14.4” D

Ordering Information

- **LXI Trigger Bus Expanders**
 - EX2108: 8-channel 70-0319-000
 - EX2116: 16-channel 70-0320-000

- **LXI Trigger Bus Terminations**
 - Trigger Bus Termination Kit: 70-0322-000

- **LXI Trigger Bus Cables**
 - 0.3 Meter: 52-0515-003
 - 1.5 Meter: 52-0515-015
 - 3.0 Meter: 52-0515-030
 - 0.0 Meter: 52-0515-100

Features

- Ideal for Synchronization of Multiple LXI™ TriggerBus Devices
- Deterministic Distribution of Trigger and Clock Signals
- Synchronize VXI-based Instrumentation
- Supports Star Configuration
- Internal Signal Buffering and Termination
- Expansion up to 320 Devices
- Minimize Control Signal Skew and Delay
Ethernet Switches

Catalyst Express 500 Series Switches

Catalyst Express 500 Series switches delivers best-in-class networking performance. This family of Layer 2-managed Fast Ethernet and Gigabit Ethernet switches offers non-blocking, wire-speed performance and provides a secure network foundation optimized for data, wireless, and IP communications. The Catalyst Express 500 Series is ideal for small to medium size system configurations.

Ordering Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Ports Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX-C500</td>
<td>(24) 10/100 and (2) 10/100/1000 Base-T uplinks</td>
</tr>
<tr>
<td>EX-C500G</td>
<td>(8) 10/1000 and (4) 10/100/1000 Base-T or SFP ports</td>
</tr>
</tbody>
</table>

Catalyst 2960 Series Switches

Catalyst 2960 Series Intelligent Ethernet Switches are a family of fixed-configuration standalone devices that provide desktop 10/100 Fast Ethernet and 10/100/1000 Gigabit Ethernet connectivity. The Catalyst 2960 offers integrated security, including network admission control (NAC), advanced quality of service (QoS) and resiliency, and intelligent services for the network edge. The Catalyst 2960 Series is ideal for medium to large size, high performance system configurations.

Ordering Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Ports Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX-C2924T</td>
<td>(24) 10/100 and (2) 10/100/1000 ports</td>
</tr>
<tr>
<td>EX-C2948T</td>
<td>(48) 10/100 and (2) 10/100/1000 ports</td>
</tr>
<tr>
<td>EX-C2924C</td>
<td>(20) 10/100 and (4) 10/100/1000 dual purpose Gigabit uplinks</td>
</tr>
<tr>
<td>EX-C2484C</td>
<td>(44) 10/100 and (4) 10/100/1000 dual purpose Gigabit uplinks</td>
</tr>
</tbody>
</table>

Wireless

Take advantage of wireless technology and locate your instruments throughout your facility without the need for wires or cabling; simply plug-in your instrument and start communicating.

Ordering Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX-W54G</td>
<td>Single port Ethernet bridge</td>
</tr>
<tr>
<td>EX-W54GS</td>
<td>5-port Ethernet bridge</td>
</tr>
</tbody>
</table>

Not all Ethernet switches are created equal, and trusting your mission critical data to a switch ideal for home networking, may not provide the expected results. At VTI, our experience configuring test systems that access thousands of channels, and transferring this data seamlessly to a host, has resulted in unique insight into these challenges. Data integrity is essential whether the application involves tens or thousands of channels; therefore, we have selected proven Ethernet switch solutions so that you can focus on the test at hand and not the network infrastructure.
Cables

Connect all of your LAN-based devices with easy to use Category 5e and 6e cable; compatible with all LXI-based instruments and IEEE-802.3 interfaces.

Ordering Information

Cat5e Cable w/Boot
- EX-CO55 5’
- EX-CO510 10’
- EX-CO620 20’

Cat6e Cable w/Boot
- EX-CO65 5’ cable
- EX-CO610 10’ cable
- EX-CO62 20’ cable

EX2500 Fiber Optic Modules and Cables

Locate your hardware where it makes sense, not where the functional limits of your interface dictate. The built-in fiber-optic interface on the EX2500 allows you to locate your instrumentation many kilometers away from the host computer and provides a connection that is inherently immune to noise and interference.

Ordering Information

SFP Module (required for connection to EX2500 electrical interface)
- EX-A57 10 SFP Module 850nm LC connector

Fiber Optic Cable LC-LC Multimode 62.5/125 Micron Duplex
- EX-F162 1 M cable
- EX-F362 3 M cable
- EX-F1062 10 M cable

Fiber Optic Cable LC-LC Multimode 50/125 Micron Duplex
- EX-F150 1 M cable
- EX-F350 3 M cable
- EX-F1050 10 M cable

Fiber Optic Cable LC-LC Singlemode 9/125 Micron Duplex
- EX-F19 1 M cable
- EX-F39 3 M cable
- EX-F109 10 M cable

Ethernet Cable

Cat5e Cable w/Boot
- EX-CO55 5’
- EX-CO510 10’
- EX-CO520 20’

Cat6e Cable w/Boot
- EX-CO65 5’ cable
- EX-CO610 10’ cable
- EX-CO62 20’ cable
Application Specific Products

VTI currently manufacturers over 200 functional test and data acquisition products used to test the most complex products in the world. The LXI specification was released in October of 2005, and VTI is quickly introducing new products based upon this standard, with the first additions highlighted below. For details on new product introductions and announcements please reference our website at www.vxitech.com.

48-Channel Strain Gage Measurement

The EX1629 Remote Strain Gage Measurement Unit greatly simplifies stress and fatigue testing of mechanical structures such as airframes and launch vehicles. Ethernet control allows for remote operation and easy connection to the host computer in a single system that can provide high-quality static or high speed strain measurements. The EX1629 is ideal for airframe structural and fatigue test, rocket and satellite structural test, wind tunnel flight load test, as well as general purpose bridge measurements.

EX1629 Remote Strain Gage Instrument

48-Channel Thermocouple and Voltage Measurement

The EX1048 Precision Thermocouple Instrument combines all of the features necessary to address your most demanding temperature measurement applications in an easy to use package. Exceptional temperature accuracy and stability are available in this scalable, standalone module that can be directly connected to your Ethernet network.

The EX1000 provides 48 channels of precision voltage measurements featuring independent signal conditioning paths with software selectable filters to provide the ultimate in flexibility and performance. Complete channel independence ensures data integrity regardless of sample speed or input overload conditions, and solid state signal scanning paths eliminate long-term maintenance costs associated with other implementations. This family of instruments also provides measurement flexibility when precision thermocouple signals are mixed with voltages or inputs from other transducer types.

EX1000 48-Channel Voltage Measurement Instrument
EX1016 16-Ch Thermocouple/32-Ch Voltage Instrument
EX1032 32-Ch Thermocouple/16-Ch Voltage Instrument
EX1048 48-Channel Precision Thermocouple Instrument
EX7000 - LXI Microwave Switch

The EX7000 family of microwave switching products begins with an Ethernet controlled mainframe based on the LXI platform. Up to 12 miniature microwave building blocks can be added per 1U of rack space. There is also a removable tray that can house components such as splitters, combiners and attenuators, for custom configurations. The EX7000 series is a scalable architecture and available in multiple rack-U height configurations, with up to 72 relays in a 6U mainframe.

The EX7000 incorporates a flexible and modular approach to RF/microwave sub-assembly design, by allowing the user to populate single or multiple mainframes with the exact number and types of components that the application demands. If expansion is required, additional slices can easily be added. This approach not only provides maximum amount of flexibility during the initial system configuration phase, but also permits the ability to modify the system at a later date without being faced with additional non-recurring engineering and design costs.

As with the majority of our LXI devices, the EX7000 series is designed as a class A compliant device. As such, it has the necessary features to support device synchronization and timing within an LXI network via IEEE-1588 and the LXI Trigger Bus. This is critical for maintaining tight deterministic control with instrumentation that is necessary for the most challenging RF applications. A full-featured graphical user interface is supplied that provides immediate control of each relay. Additionally, an IVI driver is supplied to facilitate integration into an automated test environment.
Corporate

VTI designs and manufactures precision modular instrumentation. We have a growing portfolio of over 200 products that address electronic and mechanical test applications. Our business units address the following areas:

Functional Test • Integrated Data Acquisition and Signal Conditioning Dynamic Signal Analysis • Custom Microwave Subsystems

The four key values that drive our product development are:

• Measurement integrity •
• Modularity and density •
• Product longevity •
• Lowest total cost of ownership •

Customer Support

VTI’s worldwide sales, service, and support infrastructure is staffed with knowledgeable engineers and technical sales personnel to provide both pre- and post-sales system configuration, as well as expert technical assistance.

Our engineering professionals possess a wide range of industry experience to assist you in solving your most complex application challenges and issues ranging from functional test to dynamic signal analysis to static data acquisition.

Contact a sales professional or applications engineer to discuss your application at 949-955-1894, or visit our support site at www.vxitech.com/support.aspx.

Resources

A wide range of application notes and technical reference material can be found on our website, or in our convenient Product Catalog and Engineering Handbook. The website also contains additional resources such as, new product announcements, software drivers, equipment manuals, and frequently asked questions (FAQ’s).

VTI: www.vxitech.com

LXITM information: www.vxitech.com/lx

Industry Solutions: www.vxitech.com/industry.sapx

Technical Note: www.vxitech.com/technote.sapx